Геологическое таргетирование как наиболее эффективный инструмент прогноза и поисков рудных месторождений

Читалин А.Ф., Агапитов Д.Д

ООО «Институт геотехнологий»

Майнекс Казахстан 19-20 апреля 2023 г Астана

Геологическое таргетирование – что это ?

Target – цель

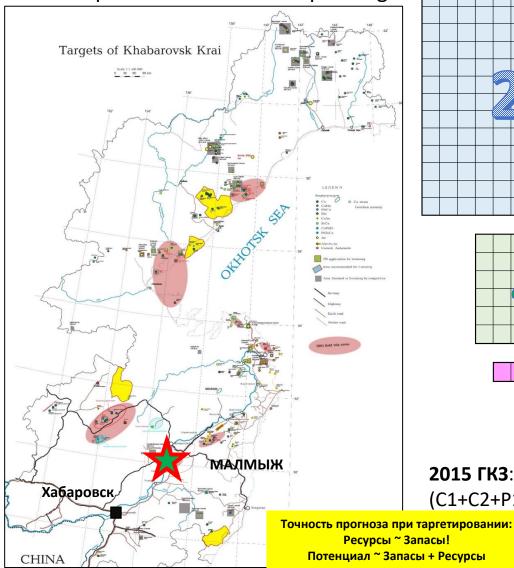
Геологическое таргетирование (Exploration targeting) Выбор лучших участков для выявления месторождения

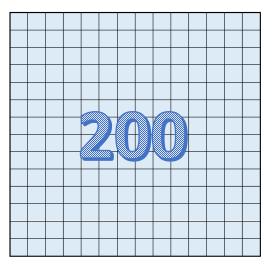
Таргетирование как бизнес-решение – ЧТО МЫ ИЩЕМ?

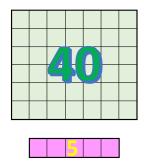
Прогнозируем месторождения с заданными параметрами

У разных компаний разные цели

Наиболее востребованные таргеты:


- Крупные Cu-Mo-Au порфировые месторождения с запасами меди не менее 2-5 млн.т
- Крупнотоннажные Au (Au-Ag) жильные и штокверковые месторождения с запасами золота не менее 30-100 т
- Колчеданные золото-полиметаллические месторождения
- Cu-Fe-Au-U месторождения типа IOCG (Olympic Dam)





Эффективность таргетирования - открытие крупного Cu-Mo-Au месторождения Малмыж

Хабаровский Край Таргеты компании Phelps Dodge

TARGET: крупные медно-порфировые месторождения с запасами меди не менее 2 млн.т, крупнообъемные (> 50-100 т) месторождения золота

2005-2006 Камеральный этап Выделено 200 потенциальных таргетов

2006-2007 Полевой этап. Ревизия 40 таргетов 1-3 приоритета

Участок Малмыж – прогнозируется месторождение мирового класса (аналог Oyu Tolgoi)

2007 Лицензирование. 5 участков 1-2 приоритета

2008-2010 Поисковые работы 1-й стадии.

МАЛМЫЖ: Ресурсы (P₁+P₂): 4.9 млн.т Си, Au-226 т.

Потенциал: Cu > 10 млн.т, Au > 500 т

2015 ГКЗ: Запасы (C₁+C₂): Cu 5.6. млн. т, Au 298 т, Ресурсы (P₁): Cu 3.3 млн.т, Au 151 т . Всего

(C1+C2+P1): Cu - 9.0 млн.т, Au 449 т (Thomas Bowens, MINEX Presentation, 2015)

Ресурсы ~ Запасы! 2023 Русская Медная Компания:

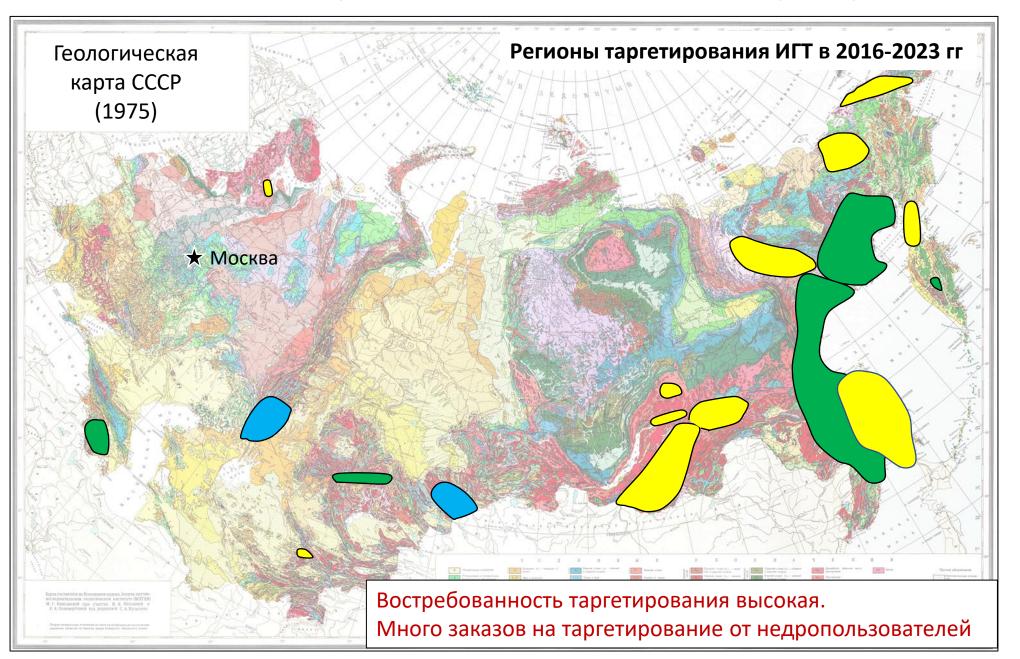
Балансовые запасы 8,3 млн тонн меди и 347,4 тонны золота (https://rmk-group.ru/)

А.Ф. Читалин и др. Малмыж – новая крупная золотомедно-порфировая система мирового класса на Сихотэ-Алине. //Минеральные ресурсы России. Экономика и управление. 2013. № 3. С. 68–73.

Востребованность геологического таргетирования

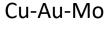
Специалисты ИГТ в 2016-2023 гг. выполняли таргетирование в России и за рубежом:

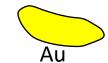
- Рудный Алтай
- Южный Урал
- Хабаровский край
- Западная Чукотка
- Магаданская область
- Республика Саха (Якутия)
- Республика Бурятия
- Архангельская область
- Монголия
- Киргизстан
- Казахстан
- Южная Австралия
- Перу
- Грузия



Результаты таргетирования:

- выбраны наиболее перспективные участки для лицензирования и поисков
- сокращены размеры лицензионных площадей
- прекращены работы на малоперспективных лицензиях
- уточнены геолого-поисковые модели
- уточнены прогнозные ресурсы
- поисковые работы сконцентрированы на рекомендованных участках
- получены рудные пересечения в рекомендованных поисковых скважинах

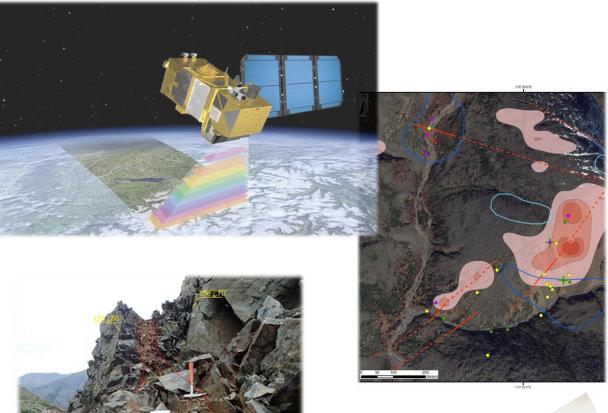



Востребованность геологического таргетирования

Регионы таргетирования

Pb-Zn-Au

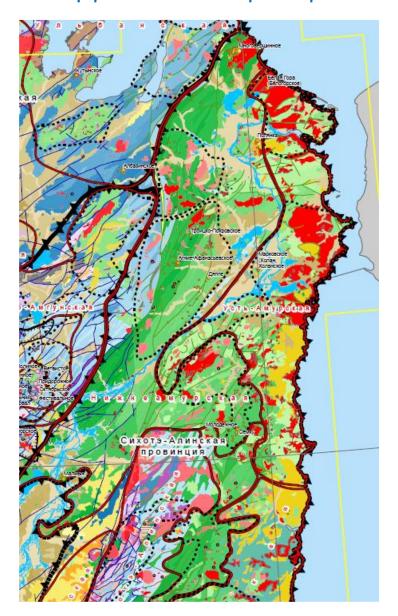
Алгоритм таргетирования ИГТ


Института геотехнологий

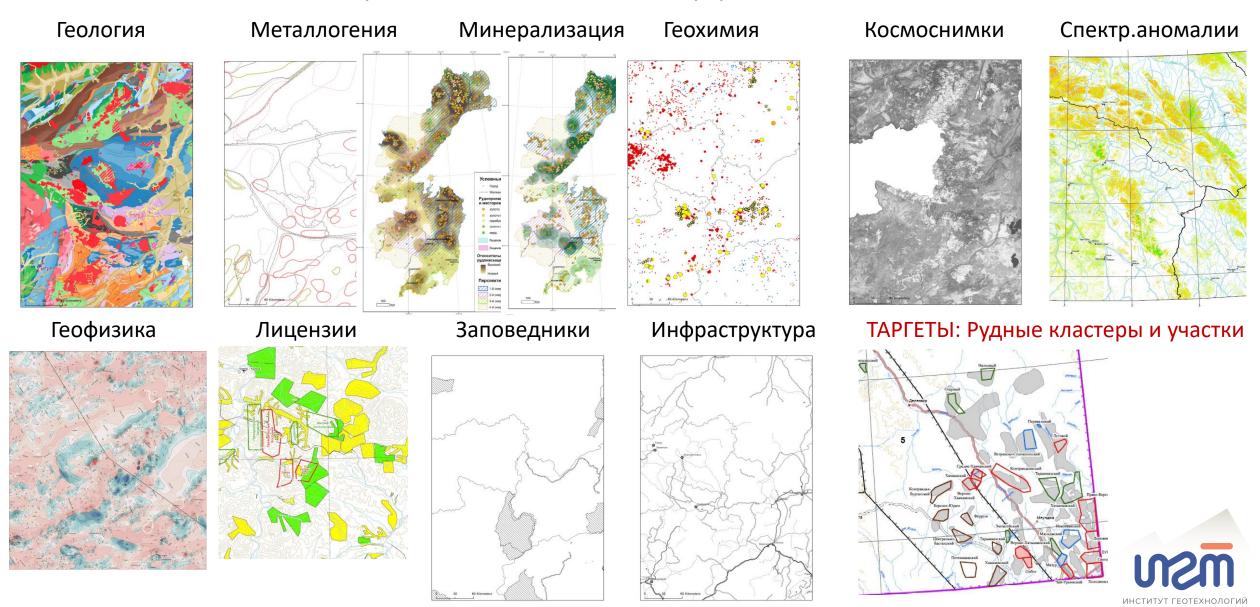
Апробированный алгоритм таргетирования

ПОСЛЕДОВАТЕЛЬНОСТЬ РАБОТ

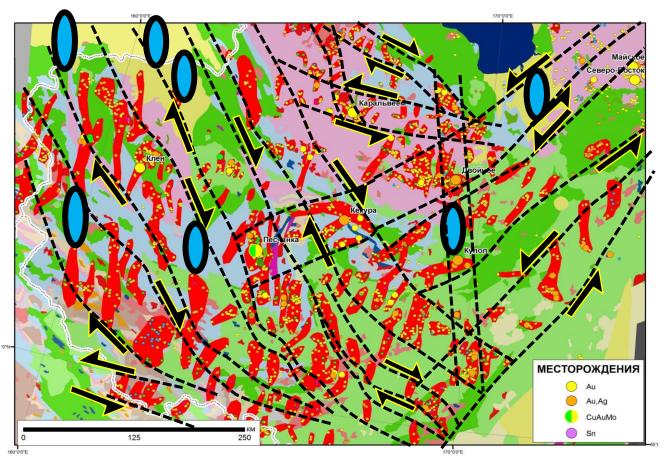
- 1. Сбор и анализ известных данных в ГИС-проекте
- 2. Полевые ревизионно-поисковые маршруты
- 3. Камеральная обработка данных —> таргеты (перспективные участки для лицензирования и поисково-оценочных работ)



Глубокий анализ первичных материалов — залог эффективного таргетирования


Сбор материалов, анализ качества выполненных работ

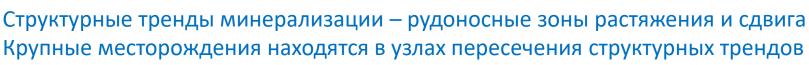
- Минерагенические схемы
- Геологические карты
- Карты полезных ископаемых
- Геохимические карты
- Геофизические карты
- Данные дистанционного зондирования
- Отчеты
- Отзывы рецензентов
- Протоколы НТС
- Диссертации
- Научные публикации



ГИС-проект - многослойная геоинформационная модель

Региональный анализ

Западная Чукотка

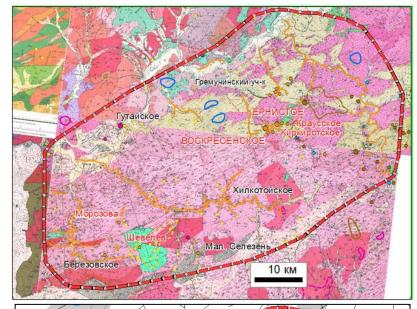


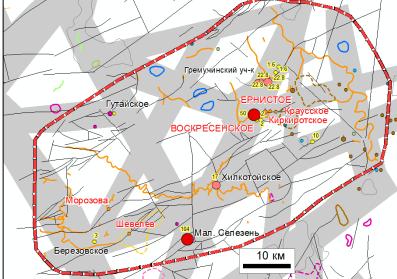
Выделение рудоконтролирующих структур и трендов минерализации – поисковых коридоров

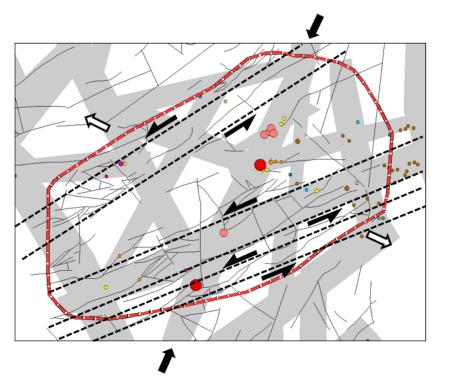
Субмеридиональные— рудные тренды- кулисные структуры растяжения в сопряженных региональных сдвиговых зонах СЗ и СВ простирания

Прогнозируемые рудные кластеры в структурных ловушках растяжения

(Читалин и др., 2016, 2017, 2019)



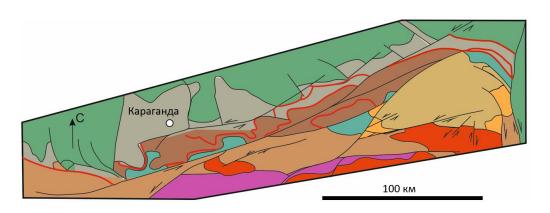

Среднемасштабный анализ


Забайкальский Край

Прогноз структурных ловушек.

Выделение наиболее перспективных для поисков участков

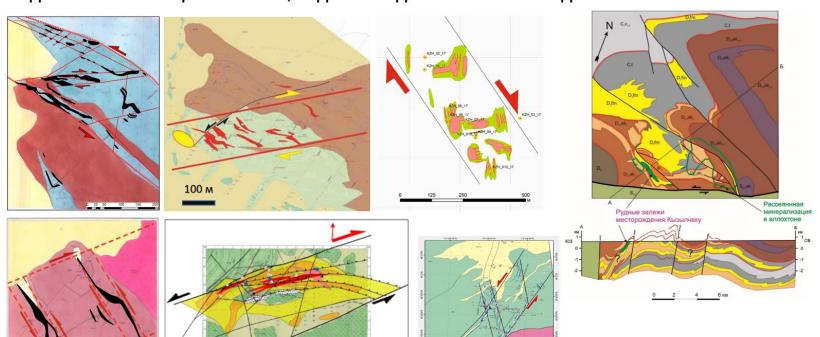
Анализируются рудные кластеры:


Геология и структура,
Рудно-геохимическая зональность
Распределение максимальных
концентраций золота

Результат:

Тренды рудной минерализации Структурная модель кластера Прогноз структурных ловушек участков растяжения в зонах влияния разрывов

Крупномасштабный и локальный структурный анализ

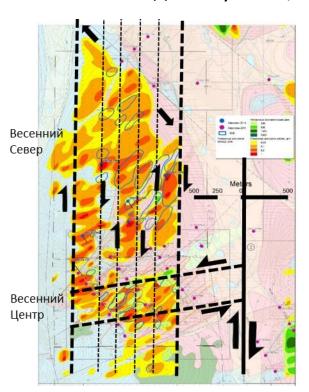

СПАССКАЯ МЕДНОРУДНАЯ ЗОНА. ЦЕНТРАЛЬНЫЙ КАЗАХСТАН

ПОЛИХРОННАЯ ИНТЕРФЕРЕНЦИОННАЯ СТРУКТУРА ПОЗДНЕПАЛЕОЗОЙСКОГО ВОЗРАСТА

- 5 ДЕФОРМАЦИИ (РАННИЙ КАРБОН РАННИЙ ТРИАС)
- СТРУКТУРНЫЙ КОНТРОЛЬ РАЗНОТИПНОЙ МЕДНОЙ И ЗОЛОТОЙ МИНЕРАЛИЗАЦИИ
- РАЗНОВОЗРАСТНЫЕ РУДНЫЕ СТРУКТУРНЫЕ ПАРАГЕНЕЗЫ

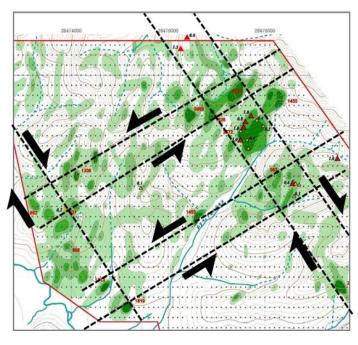
(Читалин, Читалин и др, 1983-1996, 2017)

РУДОКОНТРОЛИРУЮЩИЕ ШАРЬЯЖИ, НАДВИГИ И СДВИГОВЫЕ ЗОНЫ ПОЗДНЕПАЛЕОЗОЙСКОГО ВОЗРАСТА

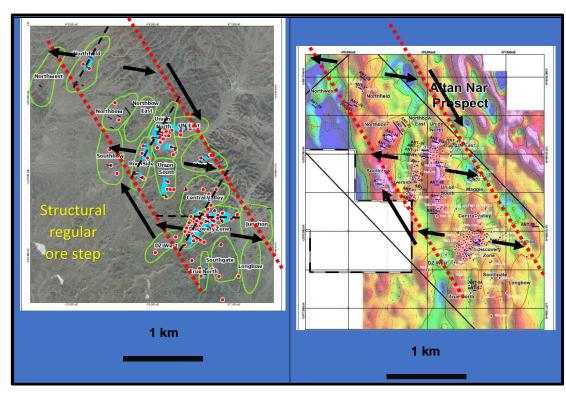

Линзовидные рудные тела контролируются надвигами, сдвигами и сдвиговыми зонами, в которых выделяются минерализованные кулисные структуры растяжения и скалывания, узлы пересечения разрывов

Структурные модели минерализации Прогноз минерализации Ранжирование участков

Структурная интерпретация геохимических и геофизических аномалий Выявление рудоконтролирующих структур и трендов минерализации — поисковых коридоров


Западная Чукотка, Баимская рудная зона

Монголия. Гоби-Алтай


Участок Весенний

Кулисные почвенные аномалии золота над золотоносными жильнопрожилковые зонами — локальные структуры растяжения в зонах сдвига

Участок Таллах

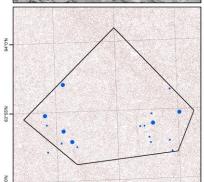
Кулисные почвенные аномалии меди над медными штокверками - локальные структуры растяжения в зонах сдвига

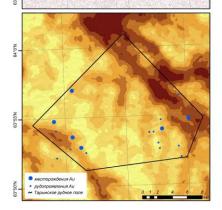
Участок Алтан Нар

Кулисные аномалии ВП (зоны сульфидизации) и рудные тела в зоне правого сдвига

Компьютерный линеаментный анализ космоснимков и БПЛА снимков

LESSA (Lineament extraction and stripe statistical analysis)

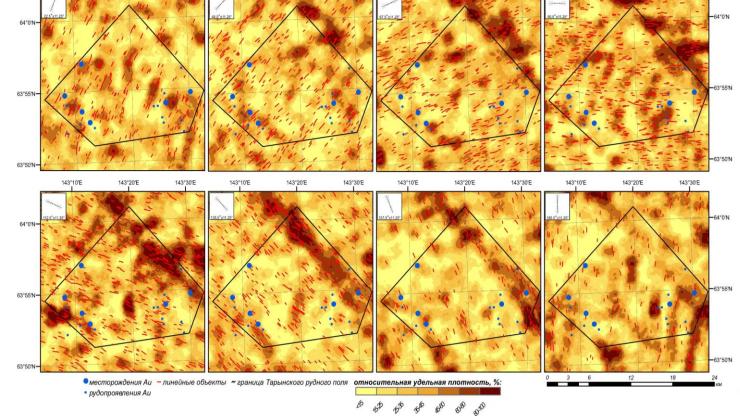




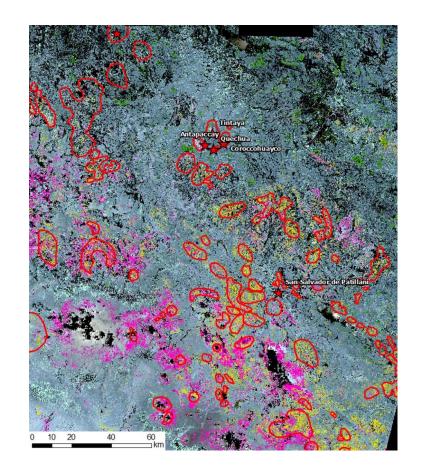

Выделение структурных трендов минерализации

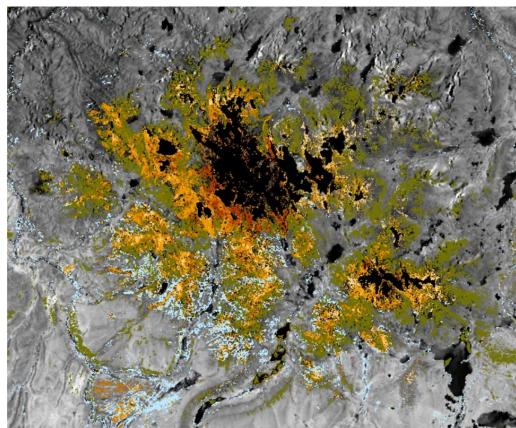
Южная Якутия

143°10'E 143°20'E 143°30'E



Линеаменты, штрихи


Карта удельной плотности линеаментов



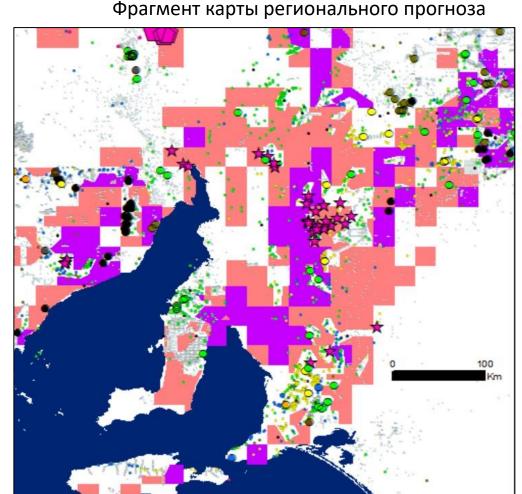
Компьютерный мультиспектральный анализ космоснимков

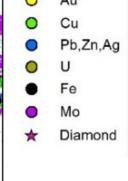
Перу
Выделение перспективных аномалий для поисков Cu-Mo-Au порфировых и эпитермальных Au-Ag месторождений

• Мультиспектральные аномалии отражают участки метасоматоза и штокверковой рудной минерализации

Компьютерный прогноз, нейросети

Проект ИГТ «Геологический анализ и машинное обучение для прогноза месторождений» (совместно с компанией Digital Petroleum)

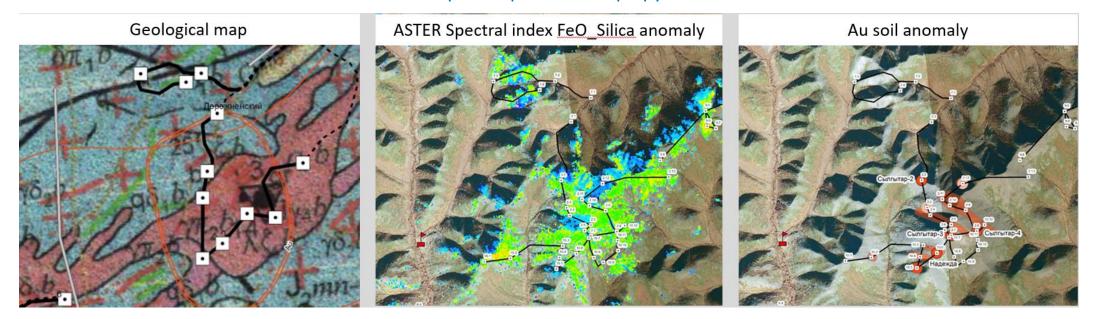

— Южная Австралия

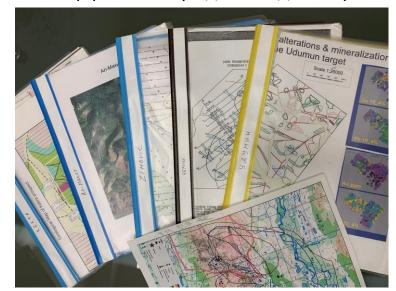

Методика компьютерного прогноза ИГТ:

- Детальный анализ всех доступных данных и выявление главных характеристик месторождений, которые отражаются на различных картах (выбор признаков классификации месторождений)
- Подбор необходимых карт для обучения алгоритмов
- Выбор алгоритмов и обучение нейросетей, тестирование
- Компьютерный прогноз и верификация
- Геологическая интерпретация и финальный прогноз

 SA High Priority Targets

SA Targets





Подготовка к полевым поисково-рекогносцировочным маршрутам

Проектирование маршрутов

Набор разных карт для каждого таргета

- Для эффективной полевой заверки нужно много подробных карт
- Маршруты намечаются по картам аномалий по детальным спутниковым снимкам
- Для оценки одного таргета (участка) требуется от 1-3 до 10-15 дней
- Результат полевых маршрутов положительная или отрицательная оценка участков, определение типа и масштаба минерализации, оценка вероятности открытия месторождения

Хабаровский Край

Архангельский край

Якутия

Северная Камчатка

Полевая экспресс-геохимия

Шлихование

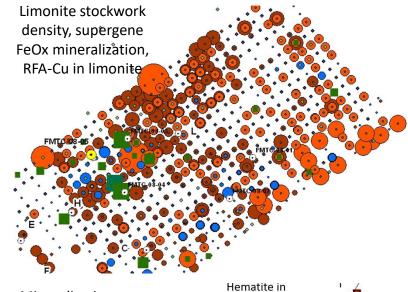
Коппер-вад (Copper-Wad)

Полевая экспресс-гидрохимия

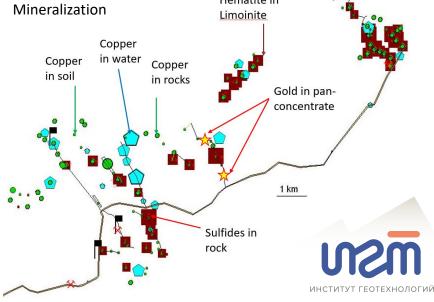
Cu - meter

Ph - meter

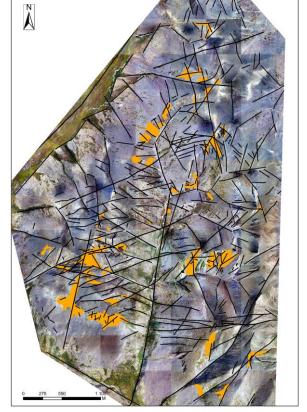
Студент определяет кислотность воды!



Полевой ГИС-проект Все полевые данные оперативно заносятся в ГИС-проект и обрабатываются



БПЛА аэрофотосъемка при полевом таргетировании



Применение БПЛА

- Геолого-структурное дешифрирование
- Изучение труднодоступных участков.
- В лесу поиск обнажений, канав, дорог

Ранжирование таргетов

- Характеристики участков заносятся в таблицу (Target Tracker) и анализируются по многим параметрам (тип минерализации, геология, геохимия, геофизика, инфраструктура, результаты полевых маршрутов и т. д.)
- Таргеты обсуждаются всеми вовлеченные геологами и ранжируются по перспективности
- Таргеты 1-2 приоритетов заверяются в поле
- После полевых маршрутов таргеты вновь ранжируются и лучшие участки рекомендуются для лицензирования и дальнейших поисковых работ

Target tracker (fragment)

Priority	Target	Туре	Geology	Geochem	Field visit or current status	Licensing
1	Malmyzh	PCuMoAu	Volcanic-sedimentary Upper Cretaceous rocks + quartz-diorite- porphyrite stock, diorite-porphiry and granodiorite-porphiry dikes. Wide field of secondary	SS anomaly 8 km2. P3 resources (100 m depth): Cu-3,270 Mt, Mo-0,106 Mt	AC,KV,MM, 2 stud. 2 week field work in June 2005; AC,MC field visit in Aug. 2005: 23 geological routs, 113 chip samples; 20 hydrochemical analyses -PH, Cu; 5 pan concentrates; 20 samples, 30 polish sections and thin sections);	Yes
2	Gryada Kamenistaya	HS alt zone	Intense qtz-limon stkwork; 25km to S of Nikolaevsk; assoc w/57.2Mt C2 alunite res drilled to		13 spls collected in field visit 2004	Yes
2	Tyr	PCuAu	Minzd fx zn 2300 x 200m) in dio porp. Propyl; qtz stkwk. Vnlt-dis		field visit Aug 2004	Yes
2	Limonitovoye	PCuAu ? HS?	Ring volcanic structure 10 km in diametre. Paleocene neck of	SS anomaly (8 km2), ppm: Mo 67; Pb 500; Zn	Sept 28-30 2004	Yes
2	Krasnaya Gorka	HS and PC	800x350 qtz-hem-(mt) stkwk subcrop NW flank of qtz-ser/vnlt		field visit Jun2004	Yes
2	Udumin	PCuMoAu	BHP prospect area of 85 km2. Udumin caldera (15 km2) above SW apical part of Tumnin batholith. Leached quartz-sericite	20-300; Au 0.006-0.08; Ag 0.03-0.6; Mo 0.8-9; Pb, Zn 10-100 in the area of 4 x 4 km; Cu soil	AC,KV, 2 stud. 1 week field work in July 2005: mapping and sampling - 40 chip samples, 37 grab samples, 21 polished and thin sections	No

Результаты таргетирования

Необходимость полевого этапа таргетирования

Сравнение результатов камерально-полевого таргетирования в медно-порфировых регионах

Количество полевых таргетов в 8 раз больше участков, рекомендуемых к лицензированию Количество полевых таргетов в 2 раза больше участков, рекомендуемых к лицензированию

ВЫВОДЫ

Геологическое таргетирование – комплекс камеральных и полевых работ для выбора наиболее перспективных участков для поисков месторождений с заданными параметрами

- Значительное увеличение вероятности открытия месторождения (отбраковка неперспективных участков на ранних этапах таргетирования)
- Уменьшение геологического риска (оценка качества и достоверности ранее выполненных работ)
- Оценка и уточнение ресурсного потенциала (заявленные прогнозные ресурсы часто не подтверждаются)
- Уменьшение времени поисковой стадии за счет фокусировки работ
- Уменьшение стоимости поисковых работ
- Повышение инвестиционной привлекательности участков

Для инвестора важна высокая эффективность капиталовложений!

✓ Алгоритм геологического таргетирования ИГТ дополняет известные методы таргетирования, которые используются в США, Австралии, Канаде и др. странах для повышения эффективности инвестиций в геологоразведку.

ИГТ - КОМПЬЮТЕРИЗАЦИЯ ГЕОЛОГИЧЕСКОГО ТАРГЕТИРОВАНИЯ

ИГТ разрабатывает оригинальные компьютерные приложения для повышения скорости и эффективности обработки больших массивов данных с помощью искусственного интеллекта

Программные модули обрабатывают различную информацию, которая используются для обучения нейронных сетей и обработки различными алгоритмами

Геолог-эксперт играет главную роль в подготовке данных на входе и анализе результатов на выходе

IGT GeoTarget – комплекс компьютерных приложений для геологического таргетирования и прогноза

Программные модули:

- Векторизация геологических карт
- Линеаментный анализ изображений
- Оптический анализ керна по растровым изображениям
- Мультиспектральный анализ космоснимков
- Структурный анализ геохимических и геофизических полей

